Ладожское озеро


Как менялся климат за время существования Земли

Автор: О. Иващенко.
Источник: форум сайта «Глобальное потепление».

Изменения климата Земли в исторической перспективе

Со времени формирования Земли из протопланетного облака происходили сильные изменения в температурном режиме ее поверхности. После того, как почти прекратились бомбардировки Земли кусками протопланетного вещества, распалась большая часть радиоактивных изотопов элементов, уменьшилась диссипация энергии приливов (благодаря отодвиганию Луны), и произошла значительная гравитационная дифференциация земного вещества, эти источники тепла стали слишком слабы, и основными факторами, влияющими на температуру всей поверхности Земли в целом, остались только поток солнечной энергии, поступающей к Земле, а также условия прохождения его и переизлученного потока через атмосферу. Т.е. основными факторами остались только солнечная светимость, пропускание земной атмосферой солнечного излучения, а также парниковый эффект.

Если посмотреть, как менялись солнечная светимость и парниковый эффект за всю историю Земли, то окажется, что солнечная светимость и парниковый эффект изменялись разнонаправлено – солнечная светимость постепенно росла, а парниковый эффект в целом уменьшался (хотя у него наблюдались и колебания на более коротких промежутках времени). Эти разнонаправленные процессы, после того, как основная роль в формировании термического режима поверхности Земли перешла именно к ним, позволили удерживать температуры на поверхности Земли в относительно узком коридоре, в котором возможна биологическая жизнь.

В начальный момент существования Земли, около 4,5 млрд. лет назад, солнечная светимость составляла примерно 1/3 часть от нынешней величины – это связано с тем, что хоть звезда типа Солнца в стабильной фазе своего существования почти не меняется, некоторые медленные изменения все же происходят – водород в ядре постепенно выгорает, и это приводит к очень медленному, но все таки заметному постепенному росту светимости. Парниковый же эффект на начальных этапах существования Земли был очень мощным – значительный нагрев Земли в это время за счет выпадения протопланетных обломков, высокой радиоактивности, и прочих указанных в начале главы причин, вызывал мощную дегазацию земных недр, поток углекислого и других парниковых газов в атмосферу был высок, а эффективных путей вывода их из атмосферы еще не было. .

Изменение средней глобальной температуры поверхности Земли
Изменение средней глобальной температуры поверхности Земли, содержания углекислого газа и кислорода в атмосфере Земли, с архея по настоящее время, в самом грубом приближении.

Если в катархее большая часть земной поверхности была расплавлена (особенно значимую роль тут вероятно играла кинетическая энергия соударения с выпадающими на поверхность кусками протопланетного вещества), то в первой половине архея температуры на поверхности уже опустились до уровня примерно 150 градусов Цельсия и даже ниже, что в условиях мощной атмосферы с высоким давлением, позволило начать конденсироваться водяным парам. Наличие жидкой воды включило механизмы геохимического, неорганического механизма вывода углекислого газа из атмосферы. В это время температура опустилась примерно до 70-90°С, и сохранялась на таком уровне почти до конца архея.

К концу архея, примерно около 2,5 млрд. лет назад значительно уменьшилась тектоническая активность, что уменьшило дегазацию недр. Ускорился и вывод углекислого газа из атмосферы. В результате всего за сотню-полторы миллионов лет основные запасы углекислого газа были выведены из атмосферы, наступило первое в истории земли мощное оледенение, известное как гуронское. Оно продолжалось более сотни миллионов лет, и средняя температуры на поверхности Земли на уровне моря в это время составляла менее 10°С. В дальнейшем все же произошло некоторое накопление углекислого газа в атмосфере, и температуры повысились, хотя так и не достигли архейских значений. Средние температуры большей части протерозоя составляли около 35-40°С, как показывают исследования. Однако к концу протерозоя на процессы вывода углекислого газа из атмосферы начал влиять новый мощный фактор.

В период примерно 900-600 млн. лет назад, на Земле вновь прошла череда сильнейших оледенений. Похоже они были вызваны широким распространением к тому времени живых организмов, способных к фотосинтезу, причем в условиях, очень хороших для захоронения органики (отсутствие кислорода на океанических глубинах) и вывода углекислого газа из атмосферы на длительный срок. Периодическое чередование таких оледенений была вызвана, вероятно, изъятием очень больших объемов углекислого газа из атмосферы биотой, похолоданием и оледенением, и в конце гибелью большей части биомассы, что приводило к сильному сокращению вывода углекислого газа из атмосферы, его накоплению в атмосфере вновь, и опять к потеплению и возрождению жизни.

Но началу фанерозоя, около 600 млн. лет назад, в атмосфере накопилось уже очень много кислорода, кроме того, вода океанических глубин также насыщалась кислородом, благодаря совокупности биологических, так и геохимических факторов. В результате заработали и механизмы, эффективно возвращающие часть захороняемого углерода из органики обратно в атмосферу в виде углекислого газа. Т.е. эффектитвно заработали и процессы окисления захороняемой органики. Благодаря этому, мощные колебания содержания углекислого газа в атмосфере, и соответственно парникового эффекта, поуменьшились, и климатическая система стала стабильнее.

изменения температуры от докембрийских эпох до наших дней
а) Изменение содержания углекислого газа в атмосфере (в количествах, кратных современной концентрации), средней глобальной температуры, средней температуры тропических широт, а также величины оледенения начиная от начала фанерозоя (ок. 600 млн. лет назад) и до настоящего времени (Crowley, T.J. and Berner, R.A., 2001, CO2 and climate change, Science 292: 870-872);
б) сглаженные данные изменения температуры от докембрийских эпох до наших дней, с указанием конкретного температурного корридора.

Итак, начиная с фанерозоя, изменения средней глобальной температуры в целом стали относительно небольшими, до 10-15 градусов. В основном, это была более теплая эпоха, по сравнению с современностью, хотя за это время и произошли три оледенения, не достигшие однако, масштаба оледенений протерозоя. Это оледенения на границе верхнего ордовика-нижнего силура (460-420 млн. лет назад), слабое оледенение верхнего девона (370-355 млн. лет назад), и наиболее мощное среди них, пермо-карбоновое (350-230 млн. лет назад), начавшеес в каменноугольном периоде. Связывают их с усилением вывода из атмосферы углекислого газа, с возраставшим в эти периоды потоком захоронения углерода (что отражено даже в названии каменноугольного периода). Кроме того, возможно на колебания климата с приблизительными периодами в 150-250 млн. лет (а именно столько проходит между великими длительными оледенениями) влияет накопление захороненого углерода в предыдущие эпохи. Благодаря движению океанической коры и явлению постоянного подныривания и задвига одних плит под другие (субдукция), происходит модуляция выброса вулканами углекислого газа и метана в атмосферу, запасами углерода накопленного на океаническом дне в предыдущие эпохи.

После продолжительной, почти постоянно теплой мезозойской эры, температура опять начала постепенно падать. Падало и содержание углекислого газа в атмосфере – в начале кайнозоя оно было примерно в пять раз больше, чем в современную эпоху.

Изменение средней глобальной температуры в течение кайнозойской эры
Изменение средней глобальной температуры в течение кайнозойской эры, за последние 65 млн. лет.

Описывая изменения климата в относительно холодные эпохи, необходимо особо выделить одно особо важное обстоятельство. После того, как общее понижение температуры достигало такой величины, что в районе полюсов температура опускалась довольно близко к 0°С, к точке замерзания воды, на климат Земли начинали влиять очень сильно многие факторы, которые в теплые эпохи были малозаметны. Это происходит потому, что тогда даже малого влияния достаточно, чтобы в полярных районах начинали формироваться ледяные шапки, а значит, чтобы и возникала заметная обратная связь между небольшим первоначальным похолоданием, и ростом альбедо, что приводит к дальнейшему, уже большему похолоданию.

Так во второй половине эоцена благодаря тому, что ранее вплотную прижатая к Антарктиде Австралия оторвалась от последней, и начала дрейфовать в строну экватора, вокруг Антарктиды начало формироваться широтное циркумполярное течение, которое стало препятствием для притока к Антарктиде теплых вод, идущих от экватора, и это послужило толчком к началу формирования ледяного щита Антарктиды. В дальнейшем, уже в миоцене, после того, как и Южная Америка отодвинулась от Антарктиды, это широтное течение замкнулось, сформировалось окончательно, и полностью преградило доступ тепла, переносимого океаном, к Антарктиде. В результате, при том что продолжалось и снижение парникового эффекта, и сформировался столь мощный ледяной щит в Антарктиде.

Заметно было и влияние на климат горообразования, повлиявшее уже на атмосферную циркуляцию и перенос атмосферой тепла от экватора к полюсам. Это относиться прежде всего к горообразованию в Евразии, в которой на протяжении кайнозоя сформировался значительный горный пояс, от Пиренеев до Гималаев, что привело к ухудшению переноса атмосферой тепла и влаги в сторону Северного полюса.

Кроме того, сильно стали влиять на климат и циклы Миланковича – периодические изменения параметров земной орбиты, с периодами 23, 41 и 100 тыс. лет. Эти циклы определяют изменения количества солнечной энергии, получаемой различными широтными зонами Земли в отдельные сезоны. Если в теплые эпохи их влияние не превышало 1 градуса, то в холодные, после образования хотя бы небольшого ледяного покрова, их влияние на среднепланетарную температуру начинало возрастать, и в конце концов возрастало в несколько раз.

Это происходило прежде всего потому, что возникали сильные обратные связи между изменением температуры, площадью оледенения (а значит и величиной альбедо) и содержанием водяного пара в атмосфере над оледенением (который является основным парниковым газом и вымораживается над ледяным покровом, а ведь современный парниковый эффект от водяного пара превышает целых 20 градусов!).

Кстати, наличие таких обратных связей и сильное влияние ледяного покрова на местный климат приводит к тому, что изменения температуры в высоких широтах (если там есть оледенение), намного превышает изменение температуры в теплых приэкваториальных широтах (понятно, что при этом сильно растет и общая разница температур между экватором и полюсом). К примеру, при переходе между ледниковым периодом и относительным межледниковьем (типа нынешнего), средняя температура теплых областей, где отсутствовал ледяной покров, менялась всего на 1-2 градуса Цельсия, а изменения в полярных областях были около 10 градусов и выше (колебания в Северном полушарии были выше чем в Южном, в связи с тем, что происходили еще сильные изменения в океанической циркуляции – прежде всего в течении Гольфстрим). А при глобальном переходе от состояния с практически полным отсутсвием льда к состоянию ледниковой эпохи (наподобие ледниковых периодов четвертичного периода) изменения температуры в полярных областях были еще значительнее, составляя уже несколько десятков градусов.

Градиент температуры между экватором и полюсами
В теплые эпохи, наподобие мезозоя, градиент температуры между экватором и полюсом составлял около 15-20 градусов. В холодные эпохи, наподобие современной, когда возникало оледенение (сначала в приполярных регионах, распространяясь в сторону низких широт со временем), температура в приполярных регионах опускалась значительно сильнее чем на экваторе, на несколько десятков градусов, в то время как на экваторе изменения составляли всего несколько градусов. Градиент температуры между экватором и полюсами увеличивался при этом до 40-60 градусов.

Как видно из рисунка ниже, за последние 5 млн. лет при постепенном снижении температуры сильно росло влияние миланковических циклов (на данном рисунке хорошо видны 100-тысячелетние и наложенные на них 41-тысячелетние циклы), благодаря чему при общем снижении температуры росла амплитуда ее колебаний.

Изменение температуры за последние 5 млн. лет
Изменение температуры за последние 5 млн. лет по данным изотопного анализа органических карбонатов. Температурные колебания даны в эквиваленте колебаний температуры в приполярных областях (т.е. заметно более резких чем в среднем по планете)

Наиболее точно известны температуры (прежде всего высоких широт) и содержание углекислого газа и метана в атмосфере за последние несколько сотен тысяч лет. Это связано с тем, что есть возможность прямого измерения содержания указанных газов в пробах льда, взятого из ледяных щитов Антарктики и Арктики; кроме того, измерение температуры изотопным методом, благодаря доступу к древнему льду, позволяет проверять и подтверждать данные изотопного анализа, получаемые по карбонатным отложениям.

Изменение температуры
Изменение температуры и содержания некоторых парниковых газов за последние 160 тыс. лет по данным ледяных кернов.

На рисунке выше показано изменение температуры и содержания углекислого газа за последние 160 тыс. лет. При этом изменение температуры хорошо отображает миланковические циклы (даже видны 20-тысячилетние циклы). Хорошо видно и почти синхронное изменение содержания углекислого газа и температуры. Вместе с тем отмечается, что при переходе от холодной эпохи к более теплой, температура и содержание углекислого газа в атмосфере меняется синхронно, а при обратном переходе изменение концентрации углекислого газа чуть запаздывает по сравнению с изменением температуры.

Судя по всему, в относительно холодные эпохи, когда парниковый эффект сам по себе уже мал (по сравнению с теплыми эпохами, наподобие мезозоя), и существуют уже очаги оледенений, на климат за счет указанных выше обратных связей (по оледенению и водяному пару) начинают сильно влиять факторы Миланковича, и эти же факторы начинают заметно модулировать парниковый эффект и от углекислого газа и метана. Ведь существуют еще и обратные связи между содержанием углекислого газа и метана в атмосфере и температурой. За счет влияния последней на природные резервуары, в которых законсервированы выведенные из атмосферы парниковые газы, возникают к примеру, такие связи: при изменении температуры меняется растворимость углекислого газа в воде, могут разрушаться либо образовываться метангидраты, меняется скорость выброса в атмосферу углекислого газа и метана при разрушении отмершей органики.

Этим можно объяснить то запаздывание снижения уровня углекислого газа в атмосфере по сравнению со снижением температуры, которое наблюдается при похолодании – ведь переход углекислого газа из атмосферы в остывающий океан (холодные воды могут вместить больше углекислого газа) требует довольно длительного времени (в том числе это связано и с растворением карбонатных пород, для высвобождения карбонат-ионов и образования бикарбонат-ионов – а это тысячелетние характерные времена). А синхронное повышение температуры и содержания углекислого газа в атмосфере при потеплении может быть обусловлено мощным выбросом углекислого газа из растаявших при отступлении ледников болот и общей активизации процессов биологического разложения органики. Да и обратное разложение в океане бикарбонат-ионов с разделением на углекислый газ и карбонат-ионы идет уже быстро.

Изменения средней годовой температуры за последние 140 лет
Изменения средней годовой температуры за последние 140 лет для всего земного шара и изменения среднегодовой температуры за последние 1000 лет для Северного полушария.
Изменения даны в отклонениях от средней глобальной температуры периода 1960-1990 гг.

Вместе с тем, нельзя и недооценивать влияние парникового эффекта холодные эпохи – он значительно усиливает колебания температуры. К примеру, оценка влияния парниковых газов за последний климатический цикл на изменение температуры в Антарктиде составляет около 50%, т.е. примерно 3 градуса из 6 (амплитуды ледниково-межледникового изменения) – это изменения температуры благодаря изменению парникового эффекта.

Изменение выброса углекислого газа от человеческой деятельности за последние 140 лет
Изменение выброса углекислого газа от человеческой деятельности за последние 140 лет.

В последнее время температура на поверхности планеты начала быстро и сильно расти. Причем, как видно из представленных выше графиков, рост температуры хорошо совпадает с выбросами углекислого газа от человеческой деятельности. Вместе с тем, надо обратить внимание на небольшое потепление в 30-40 годах, заметное на графике. Это потепление связывают не столько с повышением содержания углекислого газа в атмосфере (его в то время было еще маловато), сколько с увеличением прозрачности атмосферы для солнечного излучения, уменьшением альбедо в это время. Дело в том, что примерно с 20х годов ХХ века на несколько десятилетий установилась низкая вулканическая активность, что привело к уменьшению поступления аэрозолей, отражающих солнечный свет, в атмосферу. Однако вскоре вулканическая активность восстановила свой уровень, количество аэрозолей в атмосфере возросло, и дальнейшее потепление было обусловлено только парниковыми газами.

Скорость климатических изменений и уникальность настоящего момента

Как видно из представленных материалов, изменения глобальной средней температуры на Земле были обычно довольно медленными, для колебаний около 1 градуса и более. Даже наиболее резкие изменения в циклах Миланковича, шли со скоростью примерно 1-1,5°С за 10 тыс. лет, и то в относительно высоких широтах, с ледяным покровом (изменение в среднем по планете в несколько раз меньше, ведь в низких, приэкваториальных широтах, температура меняется очень слабо). В настоящее же время изменения средней глобальной температуры примерно на 1°С, произошли за время около 100 лет, а прогнозируемые в моделях МГЭИК (IPCC) изменения составляют еще 2-6 градусов за последующие 100 лет.

Вместе с тем, резкие изменения климата в истории Земли все же бывали. Правда они были преимущественно довольно локальными, не распространяясь полностью на всю планету. По настоящему глобальное резкое изменение климата в истории Земли известно только одно – это эоценовый термический максимум. Однако вначале разберемся с локальными изменениями.

При исследовании ледяных кернов Гренландии за последние несколько десятков тысяч лет были обнаружены резкие колебания температуры – менее чем за столетие из очень холодного состояния, местный климат в Гренландии теплел более чем на 10 градусов, температура поднималась до почти современных (правда тоже довольно низких) значений.

Изменения температуры за последние 40 тыс. лет
Изменения температуры за последние 40 тыс. лет в приполярных регионах Северного и Южного полушария по данным изотопного анализа ледяных кернов. Хорошо заметны резкие колебания в Северном полушарии и практическое отсутствие их в Южном.

Резкие изменения температуры в эпоху «юного дриаса» и несколько более ранних эпох, заметны не только в Гренландии, но и в Европе, да и во многих других районах Северного полушария. Однако в южном полушарии эти изменения почти не заметны, а в Антарктиде и вовсе отсутствуют (в эпоху «юного дриаса» в Антарктиде правда тоже было небольшое изменение, начавшееся, однако на 1000 лет раньше и бывшее заметно слабее). Подобные резкие изменения температуры в районе Северной Атлантики связывают с резкими изменениями течения Гольфстрим, которое несет теплые поверхностные воды из приэкваториальных районов к приполярным. Подобные резкие, но относительно локальные изменения могут произойти и в самом ближайшем будущем, под действием даже значительно менее заметных глобальных изменений климата.

Как уже указано выше, в истории Земли на сегодняшний день известно и одно довольно резкое глобальное изменение климата. Это эоценовый термический максимум 55 млн. лет назад (см. резкий пик на одном из рисунков выше, там где представлен график изменения средней глобальной температуры за последнее 67 млн. лет). Это событие началось с резкого и быстрого повышения температуры, за несколько тысяч лет потепление на поверхности океанов составило 8°С,  глубинные воды потеплели на 6°С. И потом около 200 тыс. лет потребовалось для восстановления прежнего состояния.

Эоценовый термический максимум 55 млн. лет назад
Эоценовый термический максимум 55 млн. лет назад характеризовался быстрым и значительным подъемом температуры поверхности Мирового океана и глубинных вод. При этом отмечалось и резкое повышение содержания метана в атмосфере.

Это резкое изменение связывают с большим выбросом метана в атмосферу, из подвергнувшихся внезапному разложению запасов метангидратов, предположительно благодаря начавшейся тектонической активности в районе одного из больших скоплений метангидратов, либо благодаря изменению океанических течений. Как раз к тому времени на океаническом дне уже около десятка млн. лет, как существовали относительно благоприятные условия для накопления метангидратов – ведь температура, и особенно глубинных вод, по окончании мезозойской эры заметно понизилась. Это и позволило накопиться заметно количеству метангидратов. Под воздействием внешней силы они начали интенсивно разрушаться, а далее, благодаря сильному влиянию выбросов метана на парниковый эффект, уже сами выбросы и потепление от них, способствовали дальнейшему разрушению метангидратов, пока их запасы не исчерпались, и поступление метана в атмосферу из этого источника не прекратилось.

Подобная ситуация резкого, и даже более резкого чем тогда, глобального потепления может повториться и в близком будущем – ведь прогнозируемое потепление в несколько градусов, от обычных антропогенных выбросов парниковых газов, уже вполне может повлиять на условия залегания метангидратов, вполне может нарушить их стабильность. А накоплено сейчас метангидратов в примерно десять раз больше, чем было накоплено ко времени эоценового термического максимума.